Sulfide solid electrolyte is a promising candidate for the development of high-energy lithium-sulfur(Li-S)batt
2023年07月13日 更新“穿梭效应”是锂硫电池基础研发和实际应用中最主要的挑战之一,特别是在富含多硫化物的高极性电解质中.本文展示了一项抑制穿梭效应的概念性研究,通过构建一个由高极性准固态电解质和弱极性液体电解质组成的液态/准固态两相界面来解决该问
2023年07月13日 更新为了抑制穿梭效应,采用固相合成法合成了聚酞菁镍(NiPPc)和聚酞菁铁(FePPc)。2种金属聚酞菁含有大量的M—N4单元,增强了基体与多硫化物的化学吸附,抑制多硫化锂的溶解,提高固硫效果,而且能催化加速硫化锂与多硫化锂间的
2023年07月13日 更新锂硫电池中较差的循环稳定性和倍率性能是实现锂硫电池商业化的技术障碍,其主要原因之一是多硫化物在硫电极内的电化学转化速率较为缓慢。为此,我们以ZIF-9为前驱体,采用先碳化,再酸化刻蚀,最后硒化的方法合成了含少量催化剂的CoS
2023年07月13日 更新有机活性材料具有低成本、灵活的可调性等突出的优点,被认为是一种非常有前途的隔膜改性材料。在这里,我们首次提出将有机小分子紫精应用于隔膜修饰材料并组装于锂硫电池。通过电化学性能测试表明,紫精不仅可以通过超分子作用力抑制多硫化锂
2023年07月13日 更新电动汽车的发展和应用对电化学储能领域的能量密度提出了更高的要求。锂硫电池的理论能量密度为2600 Wh·kg-1,是非常有前景的电化学储能体系,其面临的主要障碍包括:单质硫低的导电率影响其放电比容量;充放电中间产物的穿梭效应
2023年07月12日 更新锂硫电池以其高理论能量密度、低成本和环境友好等特征,正在引起越来越多科学家和产业界人士的关注。利用正硅酸四乙酯水解与多巴胺自聚合之间的相互促进作用,通过一步水热反应制备出具有空心结构的SiO2/氮掺杂碳复合微球。破裂微球的扫
2023年07月12日 更新锂硫电池具有高理论能量密度(2600 Wh/kg)和高理论比容量(1675 mA·h/g),被视为最有可能替代锂离子电池实现商业应用的电化学储能系统之一。然而,锂硫电池所固有的缓慢氧化还原动力学和多硫化物的“穿梭效应”等问题
2023年07月12日 更新二硒化钨具有优异导电性、高比表面积和大间距层状结构等特点,能作为催化材料有效提升锂硫电池的性能;然而少量的边缘活性位点阻碍了其催化活性的进一步提升.通过引入原子空位制造表面缺陷,可使其暴露更多的表面活性位点,提高催化活性.本
2023年07月12日 更新低碳、环保、高效是21世纪社会发展的主旋律。原材料廉价易得的锂硫(Li-S)电池因其超高能量密度(2500 Wh·kg-1)而受到能源转化与储备设备研究者的瞩目。然而,锂硫电池绝缘的活性物质与循环过程中不可避免的穿梭效应导致
2023年07月12日 更新